Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; : 528-536, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629344

RESUMO

We report the complexation of poly(ethylene glycol) conjugated double-stranded oligoDNA (PEG-(ds)oligoDNA) with imidazolium-based ionic liquids (ILs) to form polyelectrolyte complex aggregates (PCAs). The PEG-(ds)oligoDNA conjugates are prepared following a solution-phase coupling reaction. The binding of PEG-(ds)oligoDNA with either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) or 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM][BF4]) is confirmed by a fluorescence displacement assay. Both ILs show stronger binding affinity to PEG-(ds)oligoDNA than bare (ds)oligoDNA due to the PEG-assisted increase in IL cation concentration in the vicinity of (ds)oligoDNA. The complex morphology formed at various amine (N) to phosphate (P) ratios is also examined. At high N/P ratios above 4, nanosized PCAs are formed, driven by a counterion-mediated attraction among the IL-bound (ds)oligoDNA segments and stabilized by the conjugated PEG segments. The PCAs exhibit near-neutral surface charges and resistance to DNase degradation, suggesting their potential use in gene delivery applications.

2.
iScience ; 27(4): 109556, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617558

RESUMO

To achieve the successful separation of emulsions containing fine dispersed droplets and low volume fractions, a membrane with pore sizes comparable to or smaller than the droplet size is typically required. Although this approach is effective, its utilization is limited to the separation of emulsions with relatively large droplets. To overcome this limitation, a secondary membrane can be formed on the primary membrane to reduce pore size, but this can also be time-consuming and costly. Therefore, a facile and effective method is still required to be developed for separating emulsions with fine droplets. We introduce a pre-wetted mesh membrane with a pore size significantly larger than droplets, easily fabricated by wetting a hydrophilic stainless-steel mesh with water. Applying this membrane to emulsion separation via gravity-driven flow confirms a high efficiency greater than 98%, even with droplets approximately 10 times smaller than the pore size.

3.
J Oleo Sci ; 73(4): 437-444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556278

RESUMO

Polyhexamethylene guanidine (PHMG) is a guanidine-based chemical that has long been used as an antimicrobial agent. However, recently raised concerns regarding the pulmonary toxicity of PHMG in humans and aquatic organisms have led to research in this area. Along with PHMG, there are concerns about the safety of non-guanidine 5-chloro-2-methylisothiazol-3(2H)-one/2-methylisothiazol-3(2H)-one (CMIT/MIT) in human lungs; however, the safety of such chemicals can be affected by many factors, and it is difficult to rationalize their toxicity. In this study, we investigated the adsorption characteristics of CMIT/ MIT on a model pulmonary surfactant (lung surfactant, LS) using a Langmuir trough attached to a fluorescence microscope. Analysis of the π-A isotherms and lipid raft morphology revealed that CMIT/MIT exhibited minimal adsorption onto the LS monolayer deposited at the air/water interface. Meanwhile, PHMG showed clear signs of adsorption to LS, as manifested by the acceleration of the L o phase growth with increasing surface pressure. Consequently, in the presence of CMIT/MIT, the interfacial properties of the model LS monolayer exhibited significantly fewer changes than PHMG.


Assuntos
Anti-Infecciosos , Desinfetantes , Surfactantes Pulmonares , Humanos , Adsorção , Pulmão , Guanidinas/química , Guanidina
4.
Nat Commun ; 15(1): 711, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331881

RESUMO

Development of coating technologies for electrochemical sensors that consistently exhibit antifouling activities in diverse and complex biological environments over extended time is vital for effective medical devices and diagnostics. Here, we describe a micrometer-thick, porous nanocomposite coating with both antifouling and electroconducting properties that enhances the sensitivity of electrochemical sensors. Nozzle printing of oil-in-water emulsion is used to create a 1 micrometer thick coating composed of cross-linked albumin with interconnected pores and gold nanowires. The layer resists biofouling and maintains rapid electron transfer kinetics for over one month when exposed directly to complex biological fluids, including serum and nasopharyngeal secretions. Compared to a thinner (nanometer thick) antifouling coating made with drop casting or a spin coating of the same thickness, the thick porous nanocomposite sensor exhibits sensitivities that are enhanced by 3.75- to 17-fold when three different target biomolecules are tested. As a result, emulsion-coated, multiplexed electrochemical sensors can carry out simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid, antigen, and host antibody in clinical specimens with high sensitivity and specificity. This thick porous emulsion coating technology holds promise in addressing hurdles currently restricting the application of electrochemical sensors for point-of-care diagnostics, implantable devices, and other healthcare monitoring systems.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Nanocompostos , Porosidade , Emulsões , Anticorpos , Técnicas Eletroquímicas
5.
Nano Lett ; 24(2): 681-687, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38185873

RESUMO

Despite the importance of the enantioselective transport of amino acids through transmembrane protein nanopores from fundamental and practical perspectives, little has been explored to date. Here, we study the transport of amino acids through α-hemolysin (αHL) protein pores incorporated into a free-standing lipid membrane. By measuring the transport of 13 different amino acids through the αHL pores, we discover that the molecular size of the amino acids and their capability to form hydrogen bonds with the pore surface determine the chiral selectivity. Molecular dynamics simulations corroborate our findings by revealing the enantioselective molecular-level interactions between the amino acid enantiomers and the αHL pore. Our work is the first to present the determinants for chiral selectivity using αHL protein as a molecular filter.


Assuntos
Aminoácidos , Nanoporos , Proteínas Hemolisinas/química , Simulação de Dinâmica Molecular , Lipídeos
6.
Nat Commun ; 14(1): 8015, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049424

RESUMO

Liquid-liquid phase separation of proteins occurs on both surfaces of cellular membranes during diverse physiological processes. In vitro reconstitution could provide insight into the mechanisms underlying these events. However, most existing reconstitution techniques provide access to only one membrane surface, making it difficult to probe transmembrane phenomena. To study protein phase separation simultaneously on both membrane surfaces, we developed an array of freestanding planar lipid membranes. Interestingly, we observed that liquid-like protein condensates on one side of the membrane colocalized with those on the other side, resulting in transmembrane coupling. Our results, based on lipid probe partitioning and mobility of lipids, suggest that protein condensates locally reorganize membrane lipids, a process which could be explained by multiple effects. These findings suggest a mechanism by which signals originating on one side of a biological membrane, triggered by protein phase separation, can be transferred to the opposite side.


Assuntos
Lipídeos , Proteínas , Proteínas/metabolismo , Membrana Celular/metabolismo
7.
Nanomaterials (Basel) ; 13(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630937

RESUMO

The characteristics of water vapor adsorption depend on the structure, porosity, and functional groups of the material. Metal-organic framework (MOF)-derived carbon (MDC) is a novel material that exhibits a high specific area and tunable pore sizes by exploiting the stable structure and porosity of pure MOF materials. Herein, two types of aluminum-based MOFs were used as precursors to synthesize hydrophobic microporous C-MDC and micro-mesoporous A-MDC via carbonization and activation depending on the type of ligands in the precursors. C-MDC and A-MDC have different pore characteristics and exhibit distinct water adsorption properties. C-MDC with hydrophobic properties and micropores exhibited negligible water adsorption (108.54 mgg-1) at relatively low pressures (P/P0~0.3) but showed a rapid increase in water adsorption ability (475.7 mgg-1) at relative pressures of about 0.6. A comparison with the isotherm model indicated that the results were consistent with the theories, which include site filling at low relative pressure and pore filling at high relative pressure. In particular, the Do-Do model specialized for type 5 showed excellent agreement.

8.
Nanomaterials (Basel) ; 13(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37368254

RESUMO

MOF-derived carbon (MDC) and metal oxide (MDMO) are superior materials for supercapacitor electrodes due to their high specific capacitances, which can be attributed to their high porosity, specific surface area (SSA), and pore volume. To improve the electrochemical performance, the environmentally friendly and industrially producible MIL-100 (Fe) was prepared using three different Fe sources through hydrothermal synthesis. MDC-A with micro- and mesopores and MDC-B with micropores were synthesized through carbonization and an HCl washing process, and MDMO (α-Fe2O3) was obtained by a simple sintering in air. The electrochemical properties in a three-electrode system using a 6 M KOH electrolyte were investigated. These novel MDC and MDMO were applied to an asymmetric supercapacitor (ASC) system to overcome the disadvantages of traditional supercapacitors, enhancing energy density, power density, and cyclic performance. High SSA materials (MDC-A nitrate and MDMO iron) were selected for negative and positive electrode material to fabricate ASC with KOH/PVP gel electrolyte. As-fabricated ASC resulted in high specific capacitance 127.4 Fg-1 at 0.1 Ag-1 and 48.0 Fg-1 at 3 Ag-1, respectively, and delivered superior energy density (25.5 Wh/kg) at a power density 60 W/kg. The charging/discharging cycling test was also conducted, indicating 90.1% stability after 5000 cycles. These results indicate that ASC with MDC and MDMO derived from MIL-100 (Fe) has promising potential in high-performance energy storage devices.

9.
ACS Appl Mater Interfaces ; 15(20): 24681-24692, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163756

RESUMO

Microfiber fabrication via wet-spinning of lyotropic liquid crystals (LCs) with anisotropic nanomaterials has gained increased attention due to the microfibers' excellent physical/chemical properties originating from the unidirectional alignment of anisotropic nanomaterials along the fiber axis with high packing density. For wet-spinning of the microfibers, however, preparing lyotropic LCs by achieving high colloidal stability of anisotropic nanomaterials, even at high concentrations, has been a critically unmet prerequisite, especially for recently emerging nanomaterials. Here, we propose a cationically charged polymeric stabilizer that can efficiently be adsorbed on the surface of boron nitride nanotubes (BNNTs), which provide steric hindrance in combination with Coulombic repulsion leading to high colloidal stability of BNNTs up to 22 wt %. The BNNT LCs prepared from the dispersions with various stabilizers were systematically compared using optical and rheological analysis to optimize the phase behavior and rheological properties for wet-spinning of the BNNT LCs. Systematic optical and mechanical characterizations of the BNNT microfibers with aligned BNNTs along the fiber axis revealed that properties of the microfibers, such as their tensile strength, packing density, and degree of BNNT alignment, were highly dependent on the quality of BNNT LCs directly related to the types of stabilizers.

10.
Soft Matter ; 19(2): 233-244, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36511219

RESUMO

Bicontinuous structures promise applications in a broad range of research fields, such as energy storage, membrane science, and biomaterials. Kinetically arrested spinodal decomposition is found responsible for stabilizing such structures in different types of materials. A recently developed solvent segregation driven gel (SeedGel) is demonstrated to realize bicontinuous channels thermoreversibly with tunable domain sizes by trapping nanoparticles in a particle domain. As the mechanical properties of SeedGel are very important for its future applications, a model system is characterized by temperature-dependent rheology. The storage modulus shows excellent thermo-reproducibility and interesting temperature dependence with the maximum storage modulus observed at an intermediate temperature range (around 28 °C). SANS measurements are conducted at different temperatures to identify the macroscopic solvent phase separation during the gelation transition, and solvent exchange between solvent and particle domains that is responsible for this behavior. The long-time dynamics of the gel is further studied by X-ray Photon Correlation Spectroscopy (XPCS). The results indicate that particles in the particle domain are in a glassy state and their long-time dynamics are strongly correlated with the temperature dependence of the storage modulus.

11.
Langmuir ; 38(51): 16134-16143, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36520112

RESUMO

Particle removal from the surface of a substrate has been an issue in numerous fields for a long time. In semiconductor processes, for instance, the formation of clean surfaces by removing photoresist (PR) must be followed in order to create neat patterns. Although PR removal has been intensively investigated recently, little is known about how ultraviolet (UV) and developer solutions alter the PR resin (and in what manner) near the surface. While varying the exposure times of UV and developer solution, we investigated the topographic changes on the surfaces of PR resin films and particles. The measured surface properties were then correlated with the detachment force determined using films, and eventually with the residual PR particle removal percentages obtained in a microchannel. Using a positive PR and a base developer solution, we demonstrated that UV causes the surface of PR resin to become hydrophilic and wavy, whereas the developer solution produces a surface with a larger degree of roughness by swelling and partially dissolving the resin. Ultimately, the increased roughness decreased the effective contact area between PR resins, hence decreasing the detachment force and increasing the particle removal percentages. We anticipate that our findings will help understand residual particle issues, particularly on the removal mechanism of PR resins based on surface topography.

12.
JACS Au ; 2(9): 1978-1988, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36186559

RESUMO

Bioadhesives are becoming an essential and important ingredient in medical science. Despite numerous reports, developing adhesive materials that combine strong adhesion, biocompatibility, and biodegradation remains a challenging task. Here, we present a biocompatible yet biodegradable block copolymer-based waterborne superglue that leads to an application of follicle-free hair transplantation. Our design strategy bridges self-assembled, temperature-sensitive block copolymer nanostructures with tannic acid as a sticky and biodegradable polyphenolic compound. The formulation further uniquely offers step-by-step increases in adhesion strength via heating-cooling cycles. Combining the modular design with the thermal treating process enhances the mechanical properties up to 5 orders of magnitude compared to the homopolymer formulation. This study opens a new direction in bioadhesive formulation strategies utilizing block copolymer nanotechnology for systematic and synergistic control of the material's properties.

13.
ACS Cent Sci ; 8(9): 1265-1271, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36188353

RESUMO

Micrometer-sized aqueous droplets serve as a unique reactor that drives various chemical reactions not seen in bulk solutions. However, their utilization has been limited to the synthesis of low molecular weight products at low reactant concentrations (nM to µM). Moreover, the nature of chemical reactions occurring outside the droplet remains unknown. This study demonstrated that oil-confined aqueous microdroplets continuously generated hydroxyl radicals near the interface and enabled the synthesis of polymers at high reactant concentrations (mM to M), thus successfully converting the interfacial energy into the synthesis of polymeric materials. The polymerized products maintained the properties of controlled radical polymerization, and a triblock copolymer with tapered interfaces was prepared by the sequential addition of different monomers into the aqueous microdroplets. Furthermore, a polymerization reaction in the continuous oil phase was effectively achieved by the transport of the hydroxyl radicals through the oil/water interface. This interfacial phenomenon is also successfully applied to the chain extension of a hydrophilic polymer with an oil-soluble monomer across the microdroplet interface. Our comprehensive study of radical polymerization using compartmentalization in microdroplets is expected to have important implications for the emerging field of microdroplet chemistry and polymerization in cellular biochemistry without any invasive chemical initiators.

14.
Soft Matter ; 18(36): 6907-6915, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36047286

RESUMO

A rapidly self-healable polymer is highly desirable but challenging to achieve. Herein, we developed an elastomeric film with instant self-healing ability within 10 s at room temperature. For this purpose, a series of copolymers of poly(glycidyl methacrylate-co-2-hydroxyethyl acrylate) (poly(GMA-co-HEA), or pGH) were synthesized in the vapor phase via an initiated chemical vapor deposition (iCVD) process. The elastomer includes a large amount of hydroxyl groups in the 2-hydroxyethyl acrylate (HEA) moiety capable of forming rapid, reversible hydrogen bonding at room temperature, while glycidyl methacrylate (GMA) with a rigid methacrylic backbone chain in the copolymer provides mechanical robustness to the elastic copolymer. With the optimized copolymer composition, pGH indeed showed instant recovery of the toughness within a minute; a completely divided specimen could be welded within a minute at room temperature and under ambient conditions simply by placing the pieces in close contact, which showed the outstanding recovery performance of elastic modulus (93.2%) and toughness (15.6 MJ m-3). The rapid toughness recovery without supplementing any external energy or reagents (e.g. light, temperature, or catalyst) at room temperature and under ambient conditions will be useful in future wearable electronics and soft robotics applications.

15.
Nat Commun ; 13(1): 2643, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551193

RESUMO

Liquid metal is being regarded as a promising material for soft electronics owing to its distinct combination of high electrical conductivity comparable to that of metals and exceptional deformability derived from its liquid state. However, the applicability of liquid metal is still limited due to the difficulty in simultaneously achieving its mechanical stability and initial conductivity. Furthermore, reliable and rapid patterning of stable liquid metal directly on various soft substrates at high-resolution remains a formidable challenge. In this work, meniscus-guided printing of ink containing polyelectrolyte-attached liquid metal microgranular-particle in an aqueous solvent to generate semi-solid-state liquid metal is presented. Liquid metal microgranular-particle printed in the evaporative regime is mechanically stable, initially conductive, and patternable down to 50 µm on various substrates. Demonstrations of the ultrastretchable (~500% strain) electrical circuit, customized e-skin, and zero-waste ECG sensor validate the simplicity, versatility, and reliability of this manufacturing strategy, enabling broad utility in the development of advanced soft electronics.

16.
ACS Appl Mater Interfaces ; 14(11): 13601-13610, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35255687

RESUMO

Graphene fiber is emerging as a new class of carbon-based fiber with distinctive material properties particularly useful for electroconductive components for wearable devices. Presently, stretchable and bendable graphene fibers are principally employing soft dielectric additives, such as polymers, which can significantly deteriorate the genuine electrical properties of pristine graphene-based structures. We report molecular-level lubricating nanodiamonds as an effective physical property modifier to improve the mechanical flexibility of graphene fibers by relieving the tight interlayer stacking among graphene sheets. Nanoscale-sized NDs effectively increase the tensile strain and bending strain of graphene/nanodiamond composite fibers while maintaining the genuine electrical conductivity of pristine graphene-based fibers. The molecular-level lubricating mechanism is elucidated by friction force microscopy on the nanoscale as well as by shear stress measurement on the macroscopic scale. The resultant highly bendable graphene/nanodiamond composite fiber is successfully weaved into all graphene fiber-based textiles and wearable Joule heaters, proposing the potential for reliable wearable applications.

17.
Sci Total Environ ; 824: 153818, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35157864

RESUMO

Exposure to ambient particulate matter (PM) is associated with adverse health effects. Yet, due to the complexity of its chemical composition, the molecular effects of PM exposure and the mechanism of PM-mediated toxicity remain largely unknown. Here, we show that water-soluble inorganics such as nitrate and sulfate ions, rather than PM itself, rapidly penetrate the lung surfactant barrier to the alveolar region and perturb gene expression in the lungs. Through high-throughput sequencing of lung adenocarcinoma cells, we find that exposure to nitrate and sulfate ions activates the cholesterol biosynthetic metabolism and induces the expression of genes related to tumorigenesis. Transcriptome analysis of mouse lungs exposed to nitrate/sulfate aerosols reveals interferon gamma-associated immune response. Interestingly, we find that exposure to a nitrate/sulfate mixture leads to a unique gene expression pattern that is not observed when nitrate or sulfate is treated alone. Our work suggests that the water-soluble ions are a potential source of PM-mediated toxicity and provides a roadmap to unveil the molecular mechanism of health hazards from PM exposure.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , Pulmão/metabolismo , Camundongos , Nitratos/análise , Material Particulado/análise , Sulfatos/análise , Água/análise
18.
Adv Mater ; 34(12): e2107696, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35040532

RESUMO

Iminosemiquinone-linker-based conductive metal-organic frameworks (c-MOFs) have attracted much attention as next-generation electronic materials due to their high electrical conductivity combined with high porosity. However, the utility of such c-MOFs in high-performance devices has been limited to date by the lack of high-quality MOF thin-film processing. Herein, a technique known as the microfluidic-assisted solution shearing combined with post-synthetic rapid crystallization (MASS-PRC) process is introduced to generate a high-quality, flexible, and transparent thin-film of Ni3 (hexaiminotriphenylene)2 (Ni3 (HITP)2 ) uniformly over a large-area in a high-throughput manner with thickness controllability down to tens of nanometers. The MASS-PRC process utilizes: 1) a micromixer-embedded blade to simultaneously mix and continuously supply the metal-ligand solution toward the drying front during solution shearing to generate an amorphous thin-film, followed by: 2) immersion in amine solution for rapid directional crystal growth. The as-synthesized c-MOF film has transparency of up to 88.8% and conductivity as high as 37.1 S cm-1 . The high uniformity in conductivity is confirmed over a 3500 mm2 area with an arithmetic mean roughness (Ra ) of 4.78 nm. The flexible thin-film demonstrates the highest level of transparency for Ni3 (HITP)2 and the highest hydrogen sulfide (H2 S) sensing performance (2,085% at 5 ppm) among c-MOFs-based H2 S sensors, enabling wearable gas-sensing applications.

19.
Carbohydr Polym ; 277: 118847, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893257

RESUMO

Dispersion of nanofillers in a polymer matrix is one of the most important steps in preparing polymer nanocomposites. However, hydrophobic polymers and hydrophilic nanofillers are intrinsically incompatible, making it difficult to mix them homogeneously. Here, we propose the swelling-based particle adsorption method (SPA) providing a simple route to disperse cellulose nanofibrils (CNFs) within incompatible polypropylene (PP) matrix without surface functionalization of CNFs. The SPA enables CNFs to adsorb onto the surface of PP particles using a small amount of solvent. PP/CNFs composite films fabricated from the SPA showed increased Young's modulus by 80%, which agrees well with a theoretical prediction proving nano-dispersed. Furthermore, simply mixing a bit of polypropylene-graft-maleic anhydride can improve the tensile strength by 30% and the elongation at break by 10-fold than that of PP/CNFs composites. The SPA can be universally applied to any incompatible polymer-nanofiller pairs for the fabrication of nanocomposite materials.

20.
Soft Matter ; 18(1): 53-61, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34843612

RESUMO

A high internal phase emulsion (HIPE), which has a volume fraction of dispersed phase of over 74%, shows a solid-like property because of concentrated polyhedral droplets. Although many studies have proposed theoretical and empirical models to explain the rheological properties of HIPEs, most of them are only limited to the emulsions stabilized by surfactants. In the case of high internal phase Pickering emulsions (HIPPEs), much greater values of elastic modulus have been reported, compared to those of surfactant-stabilized HIPEs, but so far, there have been no clear explanations for this. In this study, we investigate how colloidal particles attribute to the significantly high elasticity of HIPPEs, specifically considering two different contributions, namely, interfacial rheological properties and bulk rheological properties. Our results reveal that the flocculated structures of colloidal particles that possess a significant elasticity can be interconnected between dispersed droplets. Furthermore, this elastic structure is a crucial factor in the high elasticity of HIPPEs, which is also supported by a simple theoretical model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...